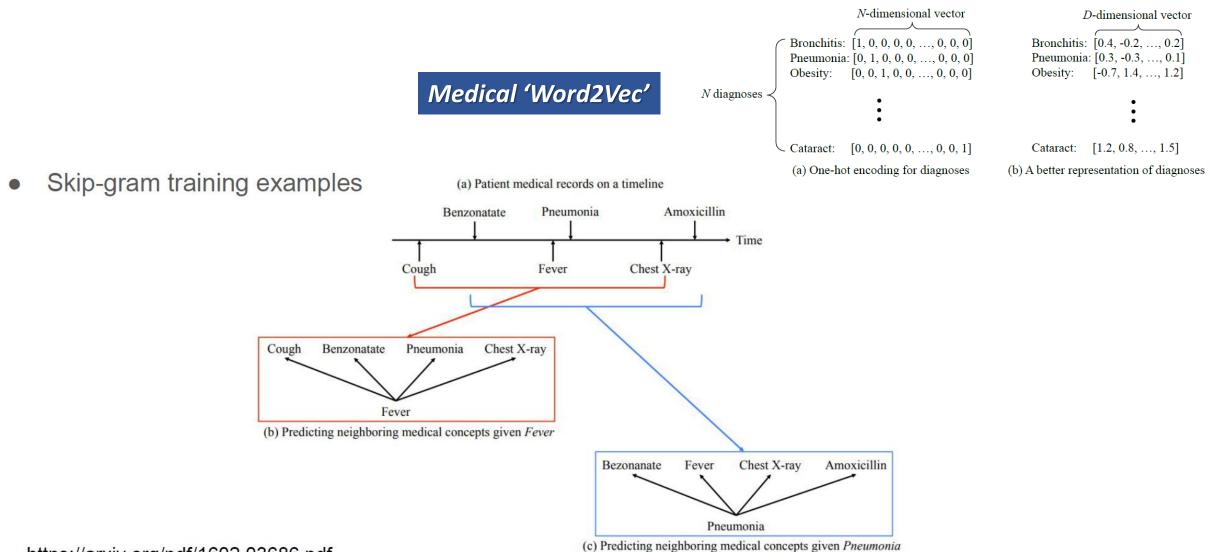
Concept/ Patient Representation

- Following Edward Choi's Ideas -

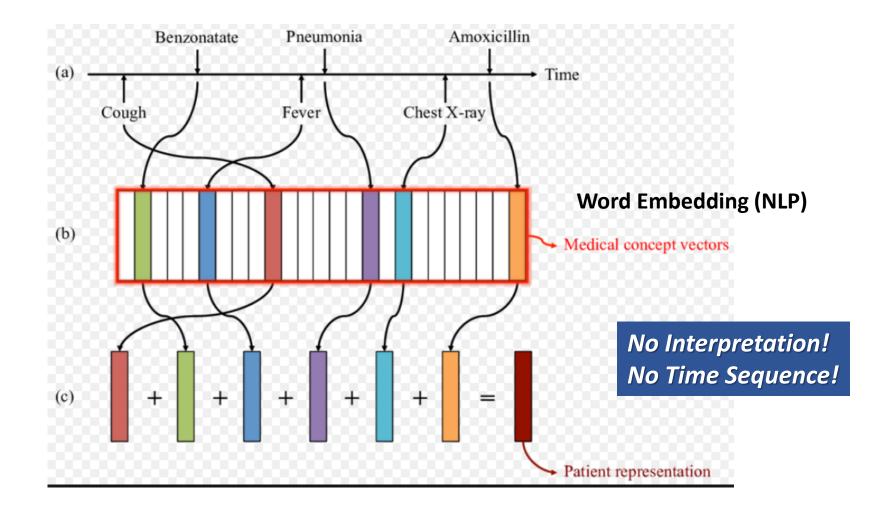
Introduction

Concept Representation

- Diagnosis, treatments, and medication codes create thousands of dummy variables (one-hot encoding) -> Sparse matrix
- Statistical models usually re-group(coarse classing) dummy variables.
- NLP techniques(word embedding) for medical concepts.
- 'Word2Vec' provides a few interesting features such as vector operation.
 - Prediction models in general require patient level data (i.e. disease prediction)
 - Concept representation can be transformed to patient presentation.
 ✓ However, summation/average of concept vectors loses temporal information as well as interpretability.
- E. Choi tries to incorporate sequential information whilst making the models interpretable at the same time.

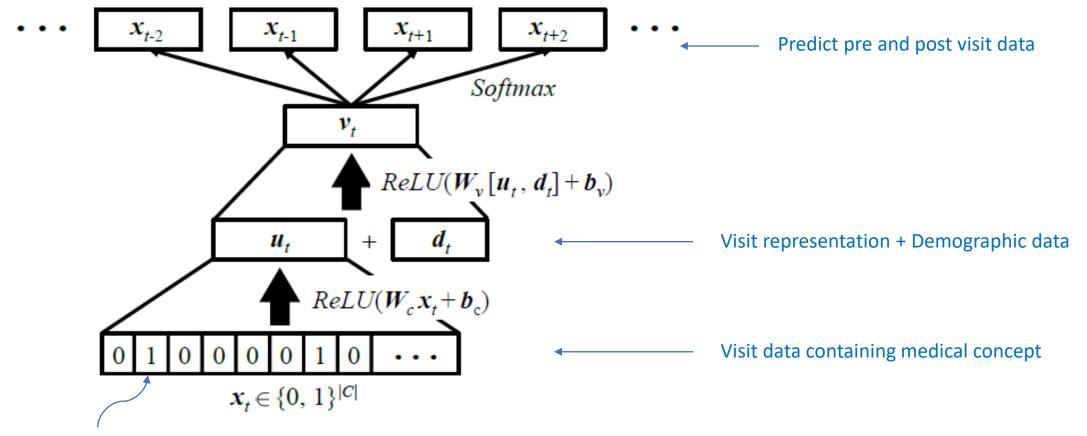


https://arxiv.org/pdf/1602.03686.pdf



Multi-Layer Representation Learning for Medical Concept

Mr.Choi names this architecture as Med2Vec! Probably it is difficult to build a sequential model using medical concepts only. (lost of dups concepts) Let's bring a 'visit' layer to the concept representation learning.



medical concept (diagnosed as gastritis)

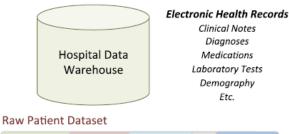
Output

B

Features

Disease

Prediction



	Medications	Diagnoses	Procedures	 Lab Tests	Patients	
Clinical Descriptors			$\hat{\nabla}$		A	

Unsupervised Deep Feature Learning

Hidden Layers

J

Drug Targeting

Clinical Trial

Recruitment

Patient Similarity

Input

Deep Patient Dataset

Personalized

Prescription

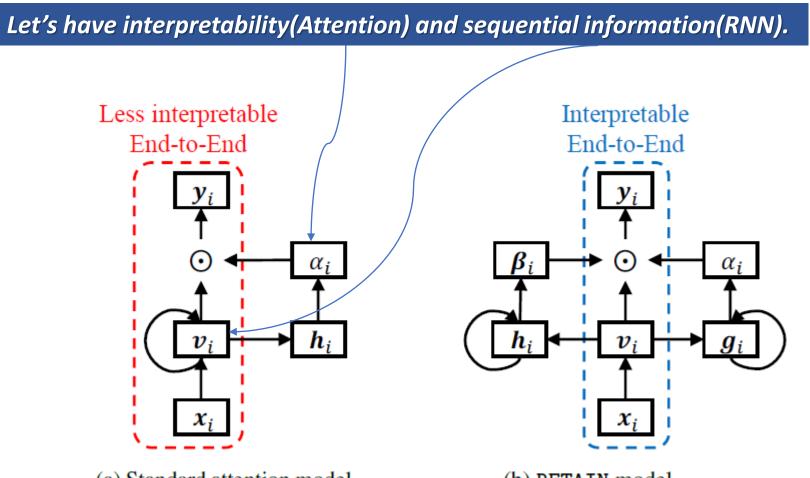
Patients

Figure 1. Conceptual framework used to derive the deep patient representation through unsupervised deep learning of a large EHR data warehouse. (A) Pre-processing stage to obtain raw patient representations from the EHRs. (B) The raw representations are modeled by the unsupervised deep architecture leading to a set of general and robust features. (C) The deep features are applied to the entire hospital database to derive patient representations that can be applied to a number of clinical tasks.

Stacked Denoising AutoEncoder

-> Good idea, but no interpretability and no temporal info !





(a) Standard attention model

(b) RETAIN model

Retain – Interpretable and Predictive Model

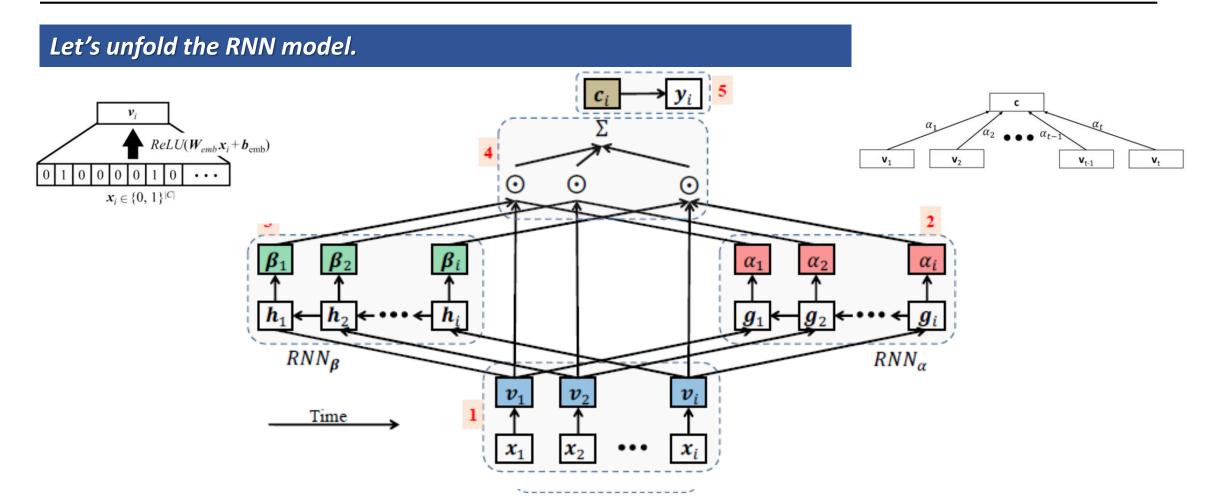


Figure 2: Unfolded view of RETAIN's architecture: Given input sequence x_1, \ldots, x_i , we predict the label y_i . Step 1: Embedding, Step 2: generating α values using RNN $_{\alpha}$, Step 3: generating β values using RNN $_{\beta}$, Step 4: Generating the context vector using attention and representation vectors, and Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

$$p(\mathbf{y}_i|\mathbf{x}_1,\dots,\mathbf{x}_i) = p(\mathbf{y}_i|\mathbf{c}_i) = \text{Softmax}\left(\mathbf{W}\mathbf{c}_i + \mathbf{b}\right)$$
(2)

where $\mathbf{c}_i \in \mathbb{R}^m$ denotes the context vector. According to Step 4, \mathbf{c}_i is the sum of the visit embeddings $\mathbf{v}_1, \ldots, \mathbf{v}_i$ weighted by the attentions α 's and β 's. Therefore Eq (2) can be rewritten as follows,

$$p(\mathbf{y}_i|\mathbf{x}_1,\ldots,\mathbf{x}_i) = p(\mathbf{y}_i|\mathbf{c}_i) = \operatorname{Softmax}\left(\mathbf{W}\left(\sum_{j=1}^i \alpha_j \beta_j \odot \mathbf{v}_j\right) + \mathbf{b}\right)$$
(3)

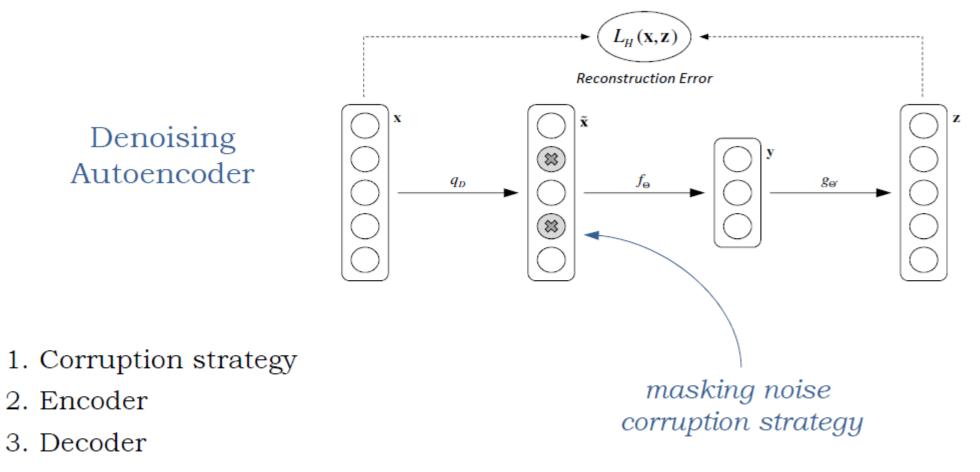
Using the fact that the visit embedding v_i is the sum of the columns of W_{emb} weighted by each element of x_i , Eq (3) can be rewritten as follows,

$$p(\mathbf{y}_{i}|\mathbf{x}_{1},\ldots,\mathbf{x}_{i}) = \operatorname{Softmax}\left(\mathbf{W}\left(\sum_{j=1}^{i}\alpha_{j}\beta_{j}\odot\sum_{k=1}^{r}x_{j,k}\mathbf{W}_{emb}[:,k]\right) + \mathbf{b}\right)$$
$$= \operatorname{Softmax}\left(\sum_{j=1}^{i}\sum_{k=1}^{r}x_{j,k}\alpha_{j}\mathbf{W}\left(\beta_{j}\odot\mathbf{W}_{emb}[:,k]\right) + \mathbf{b}\right)$$
(4)

where $x_{j,k}$ is the k-th element of the input vector \mathbf{x}_j . Eq (4) can be completely deconstructed to the variables at each input $\mathbf{x}_1, \ldots, \mathbf{x}_i$, which allows for calculating the contribution ω of the k-th variable of the input \mathbf{x}_j at time step $j \leq i$, for predicting \mathbf{y}_i as follows,

$$\omega(\mathbf{y}_i, x_{j,k}) = \underbrace{\alpha_j \mathbf{W}(\boldsymbol{\beta}_j \odot \mathbf{W}_{emb}[:, k])}_{\text{Contribution coefficient}} \underbrace{x_{j,k}}_{\text{Input value}}, \tag{5}$$

APPENDIX



4. Minimize the difference between the original input and the reconstruction